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Abstract of Thesis

Investigating Accuracy of the Reconfigurable Optical Computer (ROC) in
Metatronics for Solving Partial Differential Equations

Nanoscale area metatronic analog circuitry utilizes relative permittivity between ma-

terial interfaces to confine and direct electric displacement field and electric displacement

current density operating at f = 193 THz. This is interesting because we have shown

that we can map an analog finite difference algorithm into metatronics, while avoiding the

partial differential equation (PDE) decreasing accuracy at increasing node density issue

encountered by microscale area photonic analog circuitry also operating at f = 193 THz

The microscale area electronic analog circuitry, operating at f ≈ 300 GHz, and the

nanoscale area metatronic circuitry both exhibit partial differential equation (PDE) solution

increasing accuracy at increasing node density, in the same fashion to a software driven

digital hardware based finite difference algorithm PDE solution approaching the accuracy

of analytically derived pde solution through increased node density.

With the proper allocation of hardware source and sample location for the metatronic

and electronic circuitry we have shown that both analog hardwares can operate in constant

time 0(1), and thus merit integration into larger software based parallel multi grid methods.

However, the larger metatronic operating frequency increases its Shannon–Hartley theorem

limited repetition rate (clock speed) into the Terahertz, while the smaller electronic operat-

ing frequency relegates its Shannon–Hartley theorem limited repetition rate (clock speed)

to the Gigahertz.

Through the use of resistors, capacitors, and inductors the electronic circuit can be

reconfigured to solve Laplace, Poisson, diffusion, and wave partial differential equations.

In principal the metatronic circuit can bias its epsilon near zero material to induce changes

in its relative permittivity inducing metatronic capacitance and inductance. Although this

has not been shown in simulation at this point. Metatronic resistance occurs when the

imaginary components of the epsilon near zeros material is not equal to zero.
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It is difficult to understand all of the constraints one must account for in hardware

design if one does not fully understand the final application the hardware solves. Any

PDE solution method that employs a mesh or grid, and ultimately a finite difference, in

the process of generating a solution suffers from discretization error. The only method that

does not are analytically derived solutions, which is why it is important to understand what

makes analytical methods challenging and not widely used, because in theory, the PDE

solutions they produce will be the most accurate.

The mapping of a digital finite difference algorithm to an analog circuit requires the

operational frequency and corresponding wavelengths size to exceed the diameter of the

analog grid. This relationship determines the behavior of the electronic lumped, photonic

distributed, and metatronic lumped grid based algorithms accuracy when solving PDEs. A

lumped circuit node directs current, or displacement current density based on the direc-

tion and magnitude that the node’s neighborhood is directing their current or displacement

current density. In the case of a lumped circuit the neighborhood of nodes is the entire

circuit. In a distributed circuit each nodes neighborhood is defined as all the nodes within

one wavelength of operation. If the distance between two adjacent nodes is greater than

one wavelength of operation, as is the case in the current fabricated photonic circuit, then

all of the nodes are isolated. An isolated node does not feel the effects of a neighborhood

because it has none, and instead must determine a new way to direct its optical intensity.

The current practice is to engineer the geometry of the node to direct an equal amount of

incoming optical intensity into all of the outgoing waveguides. This equal splitting is fixed

in passive silicon.

The effects on PDE accuracy of lumped neighborhood based variable splitting versus

distributed isolated node fixed splitting begin to reveal themselves as the number of nodes

in the circuit increases. Changes in grid size, density, or both point to a trend of increasing

accuracy for the lumped element circuits and decreasing accuracy for the isolated node cir-

cuits when compared to analytical continuous and digital numerical discrete pde solutions.
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This Thesis’ findings encompassing the combined advantages of increasing accuracy,

preserved reconfigurability, increased repetition rate, and decreased footprint for meta-

tronic circuits solving partial differential equations paves the wave for experimental fab-

ricated demonstrations to validate this theoretical work.
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Glossary of Terms

Amdahl’s Law In computer architecture, Amdahl’s law (or Amdahl’s argument)

Slatency(s) = 1
(1−p)+ p

s
, where Slatency is the theoretical speedup of the execution of the

whole task, s is the speedup of the part of the task that benefits from improved system

resources, and p is the proportion of execution time that the part benefiting from

improved resources originally occupied. The formula gives the theoretical speedup

in latency of the execution of a task at fixed workload that can be expected of a

system whose resources are improved. It is named after computer scientist Gene

Amdahl, and was presented at the AFIPS Spring Joint Computer Conference in 1967.

Amdahl’s law is often used in parallel computing to predict the theoretical speedup

when using multiple processors. For example, if a program needs 20 hours using a

single processor core, and a particular part of the program which takes one hour to

execute cannot be parallelized, while the remaining 19 hours (p = 0.95) of execution

time can be parallelized, then regardless of how many processors are devoted to a

parallelized execution of this program, the minimum execution time cannot be less

than that critical one hour. Hence, the theoretical speedup is limited to at most 20

times ( 1
1−P = 20) For this reason, parallel computing with many processors is useful

only for highly parallelizable programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Analytic expression An analytic expression (or expression in analytic form) is a math-

ematical expression constructed using well-known operations that lend themselves

readily to calculation. Similar to closed-form expressions, the set of well-known

functions allowed can vary according to context but always includes the basic arith-

metic operations (addition, subtraction, multiplication, and division), exponentiation

to a real exponent (which includes extraction of the nth root), logarithms, and trigono-

metric functions. However, the class of expressions considered to be analytic expres-

sions tends to be wider than that for closed-form expressions. In particular, special

xvii



functions such as the Bessel functions and the gamma function are usually allowed,

and often so are infinite series and continued fractions. On the other hand, limits in

general, and integrals in particular, are typically excluded. If an analytic expression

involves only the algebraic operations (addition, subtraction, multiplication, divi-

sion, and exponentiation to a rational exponent) and rational constants then it is more

specifically referred to as an algebraic expression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

application-specific integrated circuit An application-specific integrated circuit is an in-

tegrated circuit (IC) customized for a particular use, rather than intended for general-

purpose use. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

Big O notation Big O notation is a mathematical notation that describes the limiting be-

havior of a function when the argument tends towards a particular value or infinity. It

is a member of a family of notations invented by Paul Bachmann, Edmund Landau,

and others, collectively called Bachmann–Landau notation or asymptotic notation.

In computer science, big O notation is used to classify algorithms according to how

their running time or space requirements grow as the input size grows. In analytic

number theory, big O notation is often used to express a bound on the difference

between an arithmetical function and a better understood approximation; a famous

example of such a difference is the remainder term in the prime number theorem. Big

O notation characterizes functions according to their growth rates: different functions

with the same growth rate may be represented using the same O notation. The letter

O is used because the growth rate of a function is also referred to as the order of the

function. A description of a function in terms of big O notation usually only provides

an upper bound on the growth rate of the function. Associated with big O notation

are several related notations, using the symbols o, Ω, ω, and , to describe other kinds

of bounds on asymptotic growth rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
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co-processor A coprocessor is a computer processor used to supplement the functions of

the primary processor (the CPU). Operations performed by the coprocessor may be

floating point arithmetic, graphics, signal processing, string processing, cryptography

or I/O interfacing with peripheral devices. By offloading processor-intensive tasks

from the main processor, coprocessors can accelerate system performance. . . . . . . 8

COMPSOL Multiphysics COMSOL Multiphysics is a cross-platform finite element anal-

ysis, solver and multiphysics simulation software. It allows conventional physics-

based user interfaces and coupled systems of partial differential equations (PDEs).

COMSOL provides an IDE and unified workflow for electrical, mechanical, fluid,

and chemical applications. An API for Java and LiveLink for MATLAB may be

used to control the software externally, and the same API is also used via the Method

Editor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x, 11, 53

Conjugate gradient method In mathematics, the conjugate gradient method is an algo-

rithm for the numerical solution of particular systems of linear equations, namely

those whose matrix is symmetric and positive-definite. The

conjugate gradient method is often implemented as an iterative algorithm, applica-

ble to sparse systems that are too large to be handled by a direct implementation

or other direct methods such as the Cholesky decomposition. Large sparse systems

often arise when numerically solving partial differential equations or optimization

problems. The conjugate gradient method can also be used to solve unconstrained

optimization problems such as energy minimization. It was mainly developed by

Magnus Hestenes and Eduard Stiefel who programmed it on the Z4. The biconju-

gate gradient method provides a generalization to non-symmetric matrices. Various

nonlinear conjugate gradient methods seek minima of nonlinear equations. . . . . . . 5

Dennard scaling Dennard scaling, also known as MOSFET scaling, is a scaling law based

on a 1974 paper co-authored by Robert H. Dennard, after whom it is named. Origi-
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nally formulated for MOSFETs, it states, roughly, that as transistors get smaller, their

power density stays constant, so that the power use stays in proportion with area; both

voltage and current scale (downward) with length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

displacement current density In electromagnetism, displacement current density is the

quantity ∂D
∂t

appearing in Maxwell’s equations that is defined in terms of the rate of

change of D, the electric displacement field. Displacement current density has the

same units as electric current density, and it is a source of the magnetic field just as

actual current is. However it is not an electric current of moving charges, but a time-

varying electric field. In physical materials (as opposed to vacuum), there is also

a contribution from the slight motion of charges bound in atoms, called dielectric

polarization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

distributed element model In electrical engineering, the distributed element model or

transmission line model of electrical circuits assumes that the attributes of the cir-

cuit (resistance, capacitance, and inductance) are distributed continuously throughout

the material of the circuit. This is in contrast to the more common lumped element

model, which assumes that these values are lumped into electrical components that

are joined by perfectly conducting wires. In the distributed element model, each

circuit element is infinitesimally small, and the wires connecting elements are not

assumed to be perfect conductors; that is, they have impedance. Unlike the lumped

element model, it assumes non-uniform current along each branch and non-uniform

voltage along each node. The distributed model is used at high frequencies where the

wavelength becomes comparable to the physical dimensions of the circuit, making

the lumped model inaccurate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 23

Drude model The Drude model of electrical conduction was proposed in 1900 by Paul

Drude to explain the transport properties of electrons in materials (especially metals).

The model, which is an application of kinetic theory, assumes that the microscopic
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behavior of electrons in a solid may be treated classically and looks much like a pin-

ball machine, with a sea of constantly jittering electrons bouncing and re-bouncing

off heavier, relatively immobile positive ions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

finite difference method In mathematics, finite-difference methods (FDM) are numerical

methods for solving differential equations by approximating them with difference

equations, in which finite differences approximate the derivatives. FDMs are thus

discretization methods. FDMs convert a linear (non-linear) ODE/PDE into a system

of linear (non-linear) equations, which can then be solved by matrix algebra tech-

niques. The reduction of the differential equation to a system of algebraic equations

makes the problem of finding the solution to a given ODE ideally suited to modern

computers, hence the widespread use of FDMs in modern numerical analysis[1]. To-

day, FDMs are the dominant approach to numerical solutions of partial differential

equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 8

Indium tin oxide Indium tin oxide (ITO) is a ternary composition of indium, tin and

oxygen in varying proportions. Depending on the oxygen content, it can either be

described as a ceramic or alloy. Indium tin oxide is typically encountered as an

oxygen-saturated composition with a formulation of 74% In, 18% O2, and 8% Sn

by weight. Oxygen-saturated compositions are so typical, that unsaturated composi-

tions are termed oxygen-deficient ITO. It is transparent and colorless in thin layers,

while in bulk form it is yellowish to grey. In the infrared region of the spectrum it

acts as a metal-like mirror. Indium tin oxide is one of the most widely used transpar-

ent conducting oxides because of its two main properties: its electrical conductivity

and optical transparency, as well as the ease with which it can be deposited as a thin

film. As with all transparent conducting films, a compromise must be made between

conductivity and transparency, since increasing the thickness and increasing the con-

centration of charge carriers increases the material’s conductivity, but decreases its
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transparency. Thin films of indium tin oxide are most commonly deposited on sur-

faces by physical vapor deposition. Often used is electron beam evaporation, or a

range of sputter deposition techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Institute of Electrical and Electronics Engineers The Institute of Electrical and Elec-

tronics Engineers (IEEE) is a professional association with its corporate office in

New York City[3] and its operations center in Piscataway, New Jersey. It was formed

in 1963 from the amalgamation of the American Institute of Electrical Engineers and

the Institute of Radio Engineers. Today, the organization’s scope of interest has ex-

panded into so many related fields, that it is simply referred to by the letters I-E-E-E

(pronounced Eye-triple-E), except on legal business documents. As of 2018, it is the

world’s largest association of technical professionals with more than 423,000 mem-

bers in over 160 countries around the world. Its objectives are the educational and

technical advancement of electrical and electronic engineering, telecommunications,

computer engineering, and allied disciplines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

International Roadmap For Devices And Systems This initiative focuses on an Interna-

tional Roadmap for Devices and Systems (IRDS) through the work of roadmap teams

closely aligned with the advancement of the devices and systems industries. Led by

an international roadmap committee (IRC), International Focus Teams (IFTs) will

collaborate in the development of a roadmap, and engage with other segments of the

IEEE, such as Rebooting Computing, and related industry communities, in comple-

mentary activities to help ensure alignment and consensus across a range of stake-

holders, such as, Academia, Consortia, Industry, and National laboratories. IEEE,

the world’s largest technical professional organization dedicated to advancing tech-

nology for humanity, through the IEEE Standards Association (IEEE-SA) Industry

Connections (IC) program, supports the IRDS to ensure alignment and consensus

across a range of stakeholders to identify trends and develop the roadmap for all of
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the related technologies in the computer industry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

International Technology Roadmap for Semiconductors The International Technology

Roadmap for Semiconductors (ITRS) is a set of documents produced by a group of

semiconductor industry experts. These experts are representative of the sponsoring

organisations which include the Semiconductor Industry Associations of the United

States, Europe, Japan, South Korea and Taiwan. The documents produced carry this

disclaimer: ”The ITRS is devised and intended for technology assessment only and

is without regard to any commercial considerations pertaining to individual products

or equipment”. The documents represent best opinion on the directions of research

and time-lines up to about 15 years into the future for the following areas of technol-

ogy: System drivers/design, Test test equipment, Front-end processes, Process inte-

gration, devices and structures, Radio frequency, analog/mixed-signal technologies,

Microelectromechanical systems (MEMS), Photolithography, IC interconnects, Fac-

tory integration, Assembly packaging, Environment, safety health, Yield enhance-

ment, Metrology, Modeling simulation, Emerging research devices, and Emerging

research materials. As of 2017, ITRS is no longer being updated. . . . . . . . . . . . . . . . 1

Koomey’s law Koomey’s law describes a long-term trend in the history of computing

hardware. The number of computations per joule of energy dissipated has been

doubling approximately every 1.57 years. This trend has been remarkably stable

since the 1950s (R2 of over 98% ) and has been somewhat faster than Moore’s law.

Jonathan Koomey articulated the trend as follows: ”at a fixed computing load, the

amount of battery you need will fall by a factor of two every year and a half. . . . . . 1

linear interpolation In mathematics, linear interpolation is a method of curve fitting using

linear polynomials to construct new data points within the range of a discrete set of

known data points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
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lumped element The lumped element model (also called lumped parameter model, or

lumped component model) simplifies the description of the behaviour of spatially

distributed physical systems into a topology consisting of discrete entities that ap-

proximate the behaviour of the distributed system under certain assumptions. It is

useful in electrical systems (including electronics), mechanical multibody systems,

heat transfer, acoustics, etc. Mathematically speaking, the simplification reduces the

state space of the system to a finite dimension, and the partial differential equations

(PDEs) of the continuous (infinite-dimensional) time and space model of the physical

system into ordinary differential equations (ODEs) with a finite number of parame-

ters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27

Metatronic Metamaterial-inspired optical nanocircuitry follows the success of modular-

ization in electronics, individual nanoparticles are treated as lumped circuit elements

(for example, nanocapacitors, nanoinductors, and nanoresistors) whose impedance

is defined in terms of how the nanoparticle modifies the flux of the displacement

current, as a function of the applied electric potential. In addition, in analogy with

classical circuit wires, lumped elements in metatronic circuits are usually intercon-

nected via D-dot wires, that is, optical wires designed to confine and “guide” the

flow of the displacement current. This methodology enables the design of complex

nanoparticle systems by using techniques and tools developed for the design of elec-

tronic circuits.[1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

Moore’s law Moore’s law is the observation that the number of transistors in a dense inte-

grated circuit doubles about every two years. The observation is named after Gordon

Moore, the co-founder of Fairchild Semiconductor and CEO of Intel, whose 1965

paper described a doubling every year in the number of components per integrated

xxiv



circuit and projected this rate of growth would continue for at least another decade.

In 1975, looking forward to the next decade, he revised the forecast to doubling every

two years. The period is often quoted as 18 months because of a prediction by Intel

executive David House (being a combination of the effect of more transistors and the

transistors being faster) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Multigrid method In mathematics, the conjugate gradient method is an algorithm for the

numerical solution of particular systems of linear equations, namely those whose ma-

trix is symmetric and positive-definite. The conjugate gradient method is often im-

plemented as an iterative algorithm, applicable to sparse systems that are too large to

be handled by a direct implementation or other direct methods such as the Cholesky

decomposition. Large sparse systems often arise when numerically solving partial

differential equations or optimization problems. The conjugate gradient method can

also be used to solve unconstrained optimization problems such as energy minimiza-

tion. It was mainly developed by Magnus Hestenes and Eduard Stiefel who pro-

grammed it on the Z4. The biconjugate gradient method provides a generalization to

non-symmetric matrices. Various nonlinear conjugate gradient methods seek minima

of nonlinear equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

multiple-input and multiple-output In radio, multiple-input and multiple-output,

or MIMO, is a method for multiplying the capacity of a radio link using multiple

transmission and receiving antennas to exploit multipath propagation. MIMO has

become an essential element of wireless communication standards including IEEE

802.11n (Wi-Fi), IEEE 802.11ac (Wi-Fi), HSPA+ (3G), WiMAX (4G), and Long

Term Evolution (LTE 4G). More recently, MIMO has been applied to power-line

communication for 3-wire installations as part of ITU G.hn standard and HomePlug

AV2 specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Numerical analysis Numerical analysis is the study of algorithms that use numerical ap-
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proximation (as opposed to general symbolic manipulations) for the problems of

mathematical analysis (as distinguished from discrete mathematics). Numerical anal-

ysis naturally finds application in all fields of engineering and the physical sciences,

but in the 21st century also the life sciences, social sciences, medicine, business and

even the arts have adopted elements of scientific computations. As an aspect of math-

ematics and computer science that generates, analyzes, and implements algorithms,

the growth in power and the revolution in computing has raised the use of realistic

mathematical models in science and engineering, and complex numerical analysis is

required to provide solutions to these more involved models of the world. Numerical

analysis continues the long tradition of practical mathematical calculations, where

modern numerical analysis does not seek exact answers, because exact answers are

often impossible to obtain in practice. Instead, much of numerical analysis is con-

cerned with obtaining approximate solutions while maintaining reasonable bounds

on errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

optical intensity The optical intensity I, e.g. of a laser beam, is the optical power per unit

area, which is transmitted through an imagined surface perpendicular to the propa-

gation direction. The units of the optical intensity (or light intensity) are W/m2 or

(more commonly) W/cm2. The intensity is the product of photon energy and photon

flux. It is sometimes called optical energy flux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

ordinary differential equation In mathematics, an ordinary differential equation (ODE)

is a differential equation containing one or more functions of one independent vari-

able and the derivatives of those functions. The term ordinary is used in contrast

with the term partial differential equation which may be with respect to more than

one independent variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

passive optical A passive optical networks (PON) distinguishing feature is that it imple-

ments a point-to-multipoint architecture, in which unpowered fiber optic splitters are
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used to enable a single optical fiber to serve multiple end-points. . . . . . . . . . . . . . . 25

Photonic Photonics is the physical science of light (photon) generation, detection, and ma-

nipulation through emission, transmission, modulation, signal processing, switching,

amplification, and sensing. Though covering all light’s technical applications over

the whole spectrum, most photonic applications are in the range of visible and near-

infrared light. The term photonics developed as an outgrowth of the first practical

semiconductor light emitters invented in the early 1960s and optical fibers developed

in the 1970s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

post-Moore The (CMOS) world is ending next decade, so says the international technol-

ogy roadmap for semiconductors. In the long term ( 2017 THROUGH 2024) ,while

power consumption is an urgent challenge, its leakage or static component will be-

come a major industry crisis in the long term, threatening the survival of CMOS

technology itself, just as bipolar technology was threatened and eventually disposed

of decades ago. [ITRS 2009/2010]. Unlike the situation at the end of the bipolar

era, no technology is waiting in the wings. The technological barriers that need to

be overcome include new materials and new structures. Materials such as III-V or

germanium thin channels on silicon, or even semiconductor nanowires, carbon nan-

otubes, graphene or others may be needed. Three-dimensional architecture, such as

vertically stackable cell arrays in monolithic integration, with acceptable yield and

performance. [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

probe card A probe card is an interface between an electronic test system and a semi-

conductor wafer. Typically the probe card is mechanically docked to a prober and

electrically connected to a tester. Its purpose is to provide an electrical path between

the test system and the circuits on the wafer, thereby permitting the testing and vali-

dation of the circuits at the wafer level, usually before they are diced and packaged.

It consists, normally, of a printed circuit board (PCB) and some form of contact ele-
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ments, usually metallic, but possibly of other materials as well. . . . . . . . . . . . . . . . . . . .

12

RC time constant The RC time constant, also called tau, the time constant (in seconds)

of an RC circuit, is equal to the product of the circuit resistance (in ohms) and the

circuit capacitance (in farads), i.e. τ = RC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

technology node The technology node (also process node, process technology or simply

node) refers to a specific semiconductor manufacturing process and its design rules.

Different nodes often imply different circuit generations and architectures. Generally,

the smaller the technology node means the smaller the feature size, producing smaller

transistors which are both faster and more power-efficient. Historically, the process

node name referred to a number of different features of a transistor including the

gate length as well as M1 half-pitch. Most recently, due to various marketing and

discrepancies among foundries, the number itself has lost the exact meaning it once

held. Recent technology nodes such as 22 nm, 16 nm, 14 nm, and 10 nm refer

purely to a specific generation of chips made in a particular technology. It does not

correspond to any gate length or half pitch. Nevertheless, the name convention has

stuck and it’s what the leading foundries call their nodes. . . . . . . . . . . . . . . . . . . . . . . 1

Very Large Scale Integration Very-large-scale integration (VLSI) is the process of cre-

ating an integrated circuit (IC) by combining hundreds of thousands of transistors

or devices into a single chip. VLSI began in the 1970s when complex semiconduc-

tor and communication technologies were being developed. The microprocessor is a

VLSI device. Before the introduction of VLSI technology most ICs had a limited set

of functions they could perform. An electronic circuit might consist of a CPU, ROM,

RAM and other glue logic. VLSI lets IC designers add all of these into one chip. . 2
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Chapter 1 - Introduction

1.1 What is ROC

Reconfigurable Optical Computer (ROC) is research project undertaken by a collabora-

tion between the OPEN Lab Team under the leadership of PI Volker Sorger and the HPCL

Team under the leadership of PI Tarek El Ghazawi both based at the George Washing-

ton University through the funding of an NSF RAISE Grant working to understanding the

physics of, develop software for, and fabricate an analog co-processor implemented in Sili-

con Photonics, and Optical Metatronics, with the goal of calculating approximate solutions

to 4 classes of partial differential equations comprised of Laplace, Poisson, Diffusion, and

Wave. The approximate accuracy of these solutions, the time required to attain them, the

energy utilized in the computation, and the physical dimension of the fabricated chip are

compared against analytically derived, and numerically computed solutions, as well against

a previously researched electronic analog co-processor.

This research is part of a larger trend punctuated by the termination of the International

Technology Roadmap for Semiconductors (ITRS) 2.0 report with its final 2015 publication

[3]. The report published for decades comprised an amalgamation of the opinions of worlds

leading semiconductor researchers and industry professionals and is arguably most known

for setting expectations for semiconductor technology node scaling. However due to the

challenges posed by the limits of Moore’s law, the end of Dennard scaling, the slowing of

Koomey’s law, and the limits of Amdahl’s Law.

The Institute of Electrical and Electronics Engineers (IEEE) has pivoted and released

the International Roadmap For Devices And Systems (IRDS) 2017 edition [4]. In the report

IRDS acknowledges that 2D scaling will reach fundamental limits beyond 2020 and as a

solution they introduce three distinct eras of scaling, Geometrical (1975-2002), Equivalent

(2003∼ 2024), and 3D Power (2025∼ 2040) with Equivalent Scaling (2003∼ 2024) being

defined by the ”reduction of only horizontal dimension in conjunction with introduction of
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new materials and new physical effects”. With ”new vertical structures replacing planar

transistors”. Our research embraces this paradigm shift and falls within the scope of new

materials and new physical effects. As of 2018 companies such as Xilinx have started

to design processors with CPU, GPU, and FPGA architectures integrated [5], with the

new question being which architecture is best for which task. The PDE co-processing

capabilities of ROC fall within this trend.

1.2 Papers, Patents, and Challenges

The concept of an analog electronic mesh based computer applied to approximately

solve partial differential equations was initially researched by G. Liebmann and colleagues

in the 1950’s [6, 7]. In 2000, a programmable Very Large Scale Integration (VLSI) chip

for analog solutions to PDEs was patented [8] that can be implemented using discrete com-

ponents or as an application-specific integrated circuit (ASIC), hosted by a digital com-

puter. In 2015 members of the High-Performance Computing Lab (HPCL) and Orthogonal

Physics Enabled Nanophotonics (OPEN) lab and the filed a patent for an optical imple-

mentation of a PDE solving circuit implementation of Reconfigurable Optical Computer

(ROC) [9].

Due to the focused time I have spent working on the 4 year (2017-2021) National Sci-

ence Foundation (NSF) Research Advanced by Interdisciplinary Science and Engineering

(RAISE) funded ROC project I have been able to uncover the underlying challenges I have

been working to address as well as the ones that I have avoided in my goal of understanding

accuracy.The ROC project is a product of larger research trend, partially encompassed by

what I believe are two grand challenges.

The first being that CMOS technology surpassed analog alternatives in the 1970s be-

cause of its versatility and successful scaling, but decreasing CMOS 2D length scaling is

ending during the 2020s, which is creating room for many alternative technologies to be

proposed. This research space and funding created by the first challenge has allowed teams
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to think fundamentally about how different algorithms perform computation. After work-

ing on the ROC project, I have come to the conclusion that I am sure many other researchers

before me have concerning competitiveness encompassed in the second grand challenge.

Algorithms built into hardware must improve their computational time complexity com-

pared to pure software-based implementations to make up for a loss of versatility, but how

much versatility must the hardware provide for the effort to be worthwhile? I realize that al-

gorithms built into hardware can have similar computational time complexity but improved

energy consumption compared to pure software, but since I am focusing on accuracy as a

metric of performance, I ahve not rigorously explore improvements in energy consumption

as a metric of performance.

1.3 Deliverables

My thesis is composed of three chapters, Context Motivation, Mathematics Physics

Underlying the Computation Model, and Future Work. The Context Motivation chapter

discusses the intellectual discoveries the word builds on as well as challenges I am working

to understand and address. The deliverable discussed correspond to my contributions to

the yearly NSF specified project requirements and the structure of the written thesis. The

partial differential equation solution methods cover the different ways one can go about

solving a PDE and their limitations. The reconfigurable optical computer operation gives

an overview of the physical photonic and metatronic analog coprocessors used to solve the

PDEs, and accuracy covers the metric I use to evaluate the performance of the computer.

The second chapter, the Mathematics Physics Underlying the Computational Model

contains the meat of my investigation. In a top down approach, I first ask the question where

do the computational complexity gains originate from in an analog approach compared to a

numerical discrete one? I then analytically derive a solution to a partial differential equation

in order to understand where the difficulty in analytical approaches arises from and why an

algorithmic analytical approach to pde solutions is challenging. Then I show the standard
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numerical approach to a pde solution, followed by the original electrical analog approach

and then the novel Photonic analog and Metatronic analog approaches. In the future work

chapter I touch on what is expected by the NSF for the team to accomplish in the remaining

two years as well as further Metatronic work that I am hoping to complete.

1.3.1 Year 1 from October 2017 to September 2018

During the first year of the NSF Project I created a branch of the ”roc˙grid˙simulation”

GitHub repository, initially developed by Engin Kayraklioglu, named boundaryConditions

utilizing Python to generate spice based simulations of the electrical grid used by Lieber-

man to calculate their accuracy compared to an analytical solution to a Laplace PDE solu-

tion that I had derived. In order to better understand Liebmann’s finite difference mapping

technique I re derived his work which helped me understand the importance of a node and

its neighborhood in terms of this relationships effect on accuracy and how it is altered with

the physics of Photonics and Metatronics.

1.3.2 Year 2 from October 2018 to September 2019

During the second year I created COMSOL Models of the Metatronic ROC in order

to study the effects of network size and density on their role in accuracy, leading to an

understanding of the importance of displacement current density confinement. In my desire

to showcase the possible computational advantages of ROC, I estimated computational time

complexities values for the future processor in comparison to an electrical analog and how

it could be utilized within a and discrete parallelized implementation.

1.4 Partial Differential Equation Solution Methods

Many computational problems in science and engineering are modeled via solving par-

tial differential equations (PDEs) and are used to model physical phenomena such as fluid

dynamics [10], electricity [11], magnetism [12], mechanics [13], optics [14], and heat flow
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[15]. Some of these problems can not be solved for an Analytic expression and must rely

on Numerical analysis to generate a final answer. Numerically derived solutions are com-

monly solved by first discretizing them into finite difference equations or finite elements

through the use of the finite difference method. Iterative methods such as Conjugate gradi-

ent method or the adaptive Multigrid method are also often adopted in order to solve these

equations [16]. Due to the large number of iterations in the recursive process required to

attain more accurate solutions.

Due to the computational energy and time expense required to solve these equations

techniques have been invented to simplify their calculation, such as transforming the PDEs

into ordinary differential equations ordinary differential equation (ODEs) and much atten-

tion has been paid to creating efficient implementations of PDE solvers aimed at reducing

the number of iterations [17, 18]. A PDE solution of heat flow over a homogeneous surface

computed numerically requires the decomposition of the surface into an array of subsur-

faces through the finite difference method, known as a computational mesh. Subsurfaces

with smaller areas yield higher-precision results, but require more computations to arrive

at a solution. As PDEs form the basis for many applications in scientific computing, effi-

ciencies gained in this domain would be of great benefit to the scientific community [19].

The analog alternative to this digitally implemented numerical method traditionally uti-

lized analogue circuits comprised of Resistor(R), Inductor(L), and Capacitor (C) elements

that bypass the iterative recursive process by generating a mesh based solution in a sin-

gle execution, equivalent to a computational complexity Big O notation of 1 or n (linear)

depending on the speed of execution, once boundary conditions for the problem are set

within the mesh, with the accuracy of the solution being determined by combination of the

density of the mesh utilized and the area of the problem being solved for. This electrical

analog finite difference architecture utilizes summation of current for computation and was

originally developed to provide efficient computation of heat transfer [6] and oscillatory

flow problems in aeronautical engineering [20], and has been shown to reduce the time
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to solution through its elimination of the iterative processing steps which retard numerical

methods.

Solving PDEs using Electrical Analogues requires an array of circuit elements suitably

connected in order to yield electrical analogue of a PDE. A two-dimensional resistor array

can generate an analog solution to a Laplace equation,

∇2ϕ = 0 (1.1)

while sampling current at nodes, we expand the class of PDEs to non zero solution

Poisson Equations,

∇2ϕ = ki (1.2)

with the addition of capacitors at at nodes, we account for time dependence and expand

the class of PDEs to Diffusion Equations,

∇2ϕ = k
∂ϕ

∂t
(1.3)

and by substituting capacitors for resistors and keeping capacitors at nodes, we expand

the class of PDEs to Wave Equations,

∇2ϕ = k
∂2ϕ

∂t2
(1.4)

These classes of PDEs that can be accelerated by an electronic analog mesh based co-

processor each solve problems in a specific application-space and cater to a wide spectrum

of the standard simulation applications in science and engineering.

Due to complexities surrounding the effective integration of a static analog mesh com-
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Figure 1.1: The top row of this figure illustrates the traditional options available for solv-
ing a PDE through (A) analytical, (B) numerical, and (C) analog electrical PDE solving
paradigms, while the bottom row illustrates the reconfigurations of an analog electrical
discrete solution for different classes of partial differential equation (PDE)s including (D)
Laplace, (E) Poisson, (F) diffusion, and (G) wave equation.

puter in a Very Large Scale Integration (VLSI) architecture, the resistance network ana-

logue has remained in the academic domain [21]. This shortcoming was improved upon

by Ramirez-Angulo and DeYong [21] with a VLSI-friendly implementation of an analog

mesh computer using Complementary Metal Oxide Semiconductor (CMOS) transistors op-

erated in the subthreshold regime. However, modern digital VLSI designs prefer the use of

minimum-size devices, which is at odds with subthreshold CMOS designs, which require

larger devices to ensure proper matching [22].

Recent programs advocating for new and innovative computer architectures [23], and

the recent introduction of innovative, programmable VLSI devices, such as the nanopho-

tonic modulator [24], have created opportunities for innovative architectures that can take

advantage of these new devices [25, 26]. Conceptual metastructure based analog comput-

ing models are starting to be developed by leaders in the field including Nader Engheta

[27]. In the telecommunications space, Photonic ROC can potentially be used to efficiently

model multiple-input and multiple-output (MIMO) systems that make substantial use of
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PDEs [28]. The recent push for post-Moore computer architectures [23], has introduced

a wide variety of application-specific accelerators [29, 30, 31]. Generally, these accelera-

tors are designed to improve the performance of computationally-intensive algorithms by

limiting unnecessary calculations or data movements. To maximize an application-specific

computer’s utility, it must be capable of accelerating widely used algorithms. The progres-

sion to an analog electrical PDE solution accelerator is shown in Figure 1.1.

1.5 ROC Fundamentals

1.5.1 ROC

Reconfigurable Optical Computer (ROC) is a reconfigurable optical wavelength

co-processor, implemented in two distinct physical technologies, capable of approximately

solving PDEs through the finite difference method, constructed in a physical analog mesh

but differing from the electrical implementation introduced in Figure 1.1 by performing

summation of electrical desnity for Metatronic ROC and summation of optical intensity in

Photonic ROC.

Increases in the RC time constant as a 2D electric mesh scales its number of nodes

quadratically increases signal delay across the diameter of the mesh. If this signal delay

exceeds the clock speed of the processor the computational time complexity of the analog

electrical mesh degrades from O(1) to O(n) where n is the number of nodes along a single

side of a square mesh.

Different electrical meshes, as shown in Figure 1.1, must be fabricated for different

configurations of PDEs, therefore making an electronic analog static co-processor non re-

configurable.

Static photonic ROC utilizes changes in optical intensity due to optical loss to solve

Laplace and Poisson PDEs. Metatronic ROC confines electric displacement current density

JD = ∂D
∂t

in epsilon vary large (EVL) materials surrounded by epsilon near zero (ENZ)

materials and directs JD through nano-inductors, nano-capacitors, and nano-resistors.
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The ability to change the accuracy of the PDE solution through the ratio of the density

of the mesh versus the area of the PDE being solved for makes the ROC co-processor

concept appropriate for future Energy-Quality (EQ) scalable systems, advocated for by

green computing initiatives, which require the ability to explicitly trade off energy and

quality at different levels of abstraction [32].

Figure 1.2: The Laplace PDE dependent physical units and equations for grid components
in the electronic mesh, photonic ROC, and metatronic ROC are shown. The electrical
and metatronic circuits operate as lumped elements and the photonic circuit operates as
a distributed circuit. The equation units of metatronic ROC electric displacement current
density are as follows: ε̃ material permittivity [Fm−1], ω = 2πf Angular Frequency [Hz],
E(ω) electrical field [Vm−1] or [NC−1]. It is also important to distinguish between which
photonic quantity’s are measurable. We measure optical intensity through the use of a Y
branch and a grating along each edge at the output of each optical node.

1.5.2 Photonic

Passive photonic ROC utilizes pure etched silicon waveguides and ring resonators com-

bined with an central splitting element combined to form a photonic device that directs light

evenly from the input port to the 3 output ports with a 33.3% 33.3% 33.4% splitting. Pho-
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toinc ROC is fabricated within the GW clean room and is at a length scale greater than

the wavelength of light, λ = 1550 nm being using. The distance form node to node is

h = 60 um. This size differential results in Photoinc ROC operating in accordance to the

distributed element model shown in Figure 1.3.

Unfortunately there is a weak mapping of the electrical mesh to the photonic Mesh.

This is because we must attempt to replicate electrical resistance with optical loss which

is not equivalent. We also do not have a photonic equivalent to electrical capacitance or

electrical inductance. However due to the relative ease of manufacturing a photonic mesh

compared to a metatronic mesh we have invested energy and time into the photonic imple-

mentation of ROC as a way to demonstrate an initial fabrication. However the combination

of equal splitting along with the distributed element model means that as we scale ROC

for larger numbers of nodes the overall accuracy of the PDE solution decreases which is

the opposite of what is desired for a analog finite difference algorithm as it is scaled up as

noted in Figure 1.4.

1.5.3 Metatronic

In microelectronics and combination of an electrical current and electrical potential

through lumped elements including resistors, inductors, and capacitors has led to success-

ful modularization of circuit design through the radio frequency and microwave domains.

As we have seen in the photonic case, operating in the optical domain while still benefiting

from a lumped circuit paradigm is not trivial. As Nadar Engatar stated in his 2007 Science

paper [33] there are two primary challenges to overcome. In lower frequency domains, de-

signs involve elements that are much smaller than the wavelength of operation, fabrication

techniques can be used to construct sub wavelength dimensions at optical wavelengths.

Secondly the response of metals at IR and optical frequencies cannot be scaled directly

from RF to optics.

The ideal metamaterial-based implementation of ROC with epsilon near zero set equal
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Figure 1.3: The top row of this figure illustrates the different analog grid based PDE solving
technologies including (A) the original electrical analog, (B) the silicon photonics imple-
mentation, and (C) the Metatronic Implementation. The columns represent the different
configurations of the grid, that give the “reconfigurable” optical computer its name, allow-
ing for Poisson, diffusion, and wave configurations. As you probably have noticed, there is
no photonic schematic showing an equivalence to (D) electrical capacitance, or (G) elec-
trical inductance, but there is (F) metatronic capacitance and (H) metatronic inductance.
Table (E) shows the physical effects utilized in the technologies and is shown in larger
form in Figure 1.2. In the language of graph theory, a node is a grid point within the mesh,
and an edge is a connection between grid points.

to zero as well as physically possible epsilon near zero values are simulated in the COMP-

SOL Multiphysics based metatronic solution. of ROC. Upper bounds are placed on the

accuracy by λ/L, where L is the feature size of the network components, due to the physi-

cal nature of light, and λ is the wavelength.

Metatronics enable the ideal ROC implementation, in terms of size and accuracy. How-

ever, the complexities of an effective integration of a high speed programmable and con-

currently energy efficient static-like analog mesh significantly reduced the advancement of

this technology. Here, we demonstrate the implementation of a nano-optic co-processor

able to solve partial differential equation based on a metatronic nanocircuit board.
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Thanks to a unprecedented control of the epsilon-near-zero (ENZ) and material losses

over Indium tin oxide (ITO), we use different deposition conditions, in order to tune the

ENZ position, which potentially leads to a top-down monolithically integrated circuit [34].

The elements of the circuit could be then be electrostatically tuned [35, 36, 37, 38] and

reprogrammable aiming to solve a variety of PDEs including Poisson, diffusion, and wave.

A discussion on losses and physical limitation, induced by the losses of the ITO at ENZ

condition is provided. The solution accuracy and its scaling functions are estimated for to

finite difference approaches, and compared to other mesh solutions. The implementation

of an all optical read-out paradigm is discussed based on a Nanophotonic probe card that

detects the local near field of the scattered field and provides information of a dielectric

displacement, at given points of the nano-optics circuit, thus allowing to extrapolate the

results of the computation.

1.6 Accuracy

Figure 1.4: Electronic analog exhibits lumped element, neighborhood defined splitting, and
increased accuracy from increased node density.

When transitioning from analytical to discrete Solutions, discretization error is the prin-
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cipal source of error in the finite difference method employed in all of the discrete informa-

tion processing techniques that are discussed in the thesis. For a one dimensional problem

the discretization error of ψ can be defined in terms of its derivative. This spatial change

is defined by h, and shown at the top of Figure 1.4, which is finitely small and the re-

moval of the limit creates the approximation which is defined as the discretization error.

For a dense discretized solution where the number of nodes n approaches infinity and acts

like a continuous solution we expect the accuracy of the overall solution to increase. One

can see accuracy improvement electronically as the electronic analog exhibits lumped ele-

ment, neighborhood defined splitting, and increased accuracy from increased node density

as shown in Figure 1.4.

Figure 1.5: The metatronic circuit exhibits lumped element, neighborhood defined splitting,
and therefore increasing accuracy from increased node density all at at a smaller operational
wavelength than the electrical analog.

The details of geometric optical splitting utilized in the photonics mesh is explored by

my colleagues Shuai Sun and Engin Kayraklioglu who will give a deep explanation in their

dissertations. However due to the distributed circuit, isolated node, and therefore geometri-

cally defined splitting behavior, phonically one expects decreasing accuracy from increased

node density. This does not mean that a photonic implementation cannot provide a useful
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approximate solution, but the photonic architecture needs to compensate for this negative

effect. On a positive note, the metatronic circuit exhibits lumped element, neighborhood

defined splitting and therefore increasing accuracy from increased node density all at at a

smaller wavelength than the electrical analog as shown in Figure 1.5.
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Chapter 2 - Mathematics & Physics Underlying the Computational Model

2.1 Computational Time Complexity Requirements

The two dimensional implementation of the electrical, photonic, or metatronic analog

approximate PDE solving algorithm needs to operate as close to O(1) constant time as

possible in order to provide a useful analog advantage. Figure 2.1 indicates the number of

sources and samples needed as well as the limits of mesh dimensions in order to stay in

constant time, and therefore potentially be incorporated as an analog accelerator into, as

an example, the commonly used digital parallelized multi-grid method operating at a loga-

rithmic Θ(log x), polylogarithmic Θ(log2 x), or fractional Power Θ(
√
x) time complexity,

depending on course fine gird traversal for a grid with x grid points.

2.2 Analytical Derivation PDE Solution

2.2.1 Analytical Solution

Laplace’s equation is a second-order partial differential equation which produces, as a

solution, harmonic functions that accurately describe the behavior of electric, gravitational

and fluid potentials. It has no time dependence, only a spatial dependence, and is often

written as

∇2ϕ = 0 (2.1)

where∇2 is the Laplace operator and ϕ is a scalar function.

For the purpose of simplicity, we will only discuss spatial variables x and y, which

allows Laplace’s equation to be rewritten as

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= 0 (2.2)
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Figure 2.1: Computation time complexity of a single PDE analog grid solution iteration in
the three analog physics technologies could be incorporated into a (D) parallelized multi
grid method using finite difference method operating at logarithmic time, polylogarithmic
time, or fractional power time depending on the course fine grid traversal utilized. For one
of the analog system to remain in the constant time domain certain hardware requirements
must be met. If we assume that n is the number of nodes in a one dimension side of
an grid and h is the length of an edge between nodes in the grid, we can see that the
number of (A) current, (B) optical intensity, and (C) displacement current density hardware
source locations are needed to set boundary conditions, shown on the top row, and we can
see the needed number of (H) current, (I) optical intensity, and (J) displacement current
density sample locations are required to read out a PDE analog solution. With all of these
sources and samples operating in parallel. The grid length scales for the (E) electrical (G)
metatronic execution step remain within one operation wavelength for both technologies,
and thus remain in constant time, where as the (F) photonic grid length scale exceeds its
operational wavelength, and thus requires k iterations to traverse the diameter of the grid

Following the derivation in section 2.7.1 [39] results in the product solutions yielded

by the separation of variables method up to a constant.

ϕ3,n (x, y) = sin
(nπx
L

)
sinh

(nπy
L

)
for n = 1, 2, 3, . . . (2.3)
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Figure 2.2: (A) The four boundaries of ψ (x, y) are defined in terms of the x and y axis. (B)
The one non-zero boundary condition and three zero boundary conditions for the ϕ3 (x, y)
solution component of ϕ (x, y). (C) Plot of ψ3,n (x, y) with n = 1, L = 5 and H = 5 with
the continuous solution shown in the z axis.

2.2.2 Physical Units

Why is necessary to discuss the physical interpretation of the purely mathematical so-

lution of the Laplacian partial differential equation? To better understand the source of

inaccuracies that deviate from the analytical solution derived in Section 2.2.1 caused by

discretization and the implementation of different analog algorithms built on physical hard-

ware we must first address the inequality of units associated with the generated solutions.

The analytical solution is purely mathematical and therefor unitless. The digitally gener-

ated discretized numerical solution outputs heat map in Kelvin [K]. The electrical analog

algorithm mesh can sample solutions either in Volts [V] or current [A]. Photoinc ROC out-

puts solutions in Optical Intensity [Wm−2]. Metatronic ROC outputs solutions in Electric

Displacement Current Density JD [Am−2].

Initially we have been normalizing all our solutions between zero and one. However

to determine true equivalence in the future we can potentially add physics to our analytical

solution and generate a solution for a temperature distribution in Kelvin [K]. By mapping

electrical, photonic ROC, and metatronic ROC to an equivalent temperature distribution in

Kelvin, we can remove unit mismatch as a source of inaccuracy.
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2.3 Discrete Numerical PDE Solution

2.3.1 Numerical Solution

When using COMSOL Multiphysics to solve a two dimensional heat transfer PDE the

user of the software must define the boundary conditions of the problem and specify the

flux at each of those boundary conditions. This process is relatively similar to the analytical

method described in Section 2.3. The processes deviates when the user must specify the

computational mesh element size and the geometry of the mesh showed in Figure 2.3.

It should be noted that all computations performed in the thesis have access to the same

computing resources described in Section B.1.1.

Figure 2.3: The finalized COMSOL geometry has one domain, 4 boundaries, and 4 vertices.
(A) The physics controlled normal element size mesh consists of 68 domain elements and
20 boundary elements, (B) 578 domain elements and 60 boundary elements, and (C) 6282
domain elements and 200 boundary elements. The number of degrees of freedom solved
for is (D) 157 plus 44 internal DOFs and the solution is solved for in 1 seconds, (E) DOFs
1217 plus 124 internal DOFs solved for in 2 seconds, and (F) DOFs 12765 plus 404 internal
DOFs solved for in 1 second.

The COMSOL Multiphyics numerical heat transfer PDE solutions are used to bench-

mark the accuracy of the analog algorithm implementations described in Section 2.4, Sec-
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tion 2.5, and Section 2.6 because all 4 solutions include discretization error, described in

Section 2.3.2, that deviates from the continuous analytical solution in Section 2.2. When

striving to showcase the advantages of the analog algorithms, it is important to consider

that the numerical solution benefits from the advantage of optimization of mesh geometry,

shown in Figure 2.3, whereas the analog implementations have fixed rectangular meshes.

The general lack of flexibility of analog implementations is one of there primary weak-

nesses, and what I try to compensate through reconfigurability.

2.3.2 Discretization Error

In applied mathematics, discretization is the process of transferring continuous func-

tions, models, variables, and equations into discrete counterparts. The discretization error

is the error resulting from the fact that a function of a continuous variable is represented

by a finite number of evaluations, in this case on a lattice. This visualization code for the

discretization of our non physical analytical solution through the use of mesh scaling along

a power law with exponent of 2 can found at ROC discrete visualization. The discretization

scaling is shown in figure 2.4.

Discretization error is the principal source of error in the finite difference method em-

ployed in all of the information processing techniques this paper discusses. For a one

dimensional problem the discretization error of ϕ (x) can be defined in terms of its deriva-

tive

ϕ′ (x) = lim
h→0

f (x+ h)− f (x)

h
≈ f (x+ h)− f (x)

h
(2.4)

where h is finitely small and the removal of the limit creates the approximation which

is defined as the discretization error. For a dense discretized solutions where the number

of nodes n approaches the limit (2n ⇒ 2∞) and acts like a continuous solution allows us

to quantify the amount of inaccuracy generated by the discretization process and therefor

better understand the effects of the physical properties of the electrical, optical, and meta-
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tronic information processing on their achievable accuracy’s by accounting for inaccuracies

caused by discretization which exists in all analog algorithm implementations.

Figure 2.4: (A) Plot of ψ3,n (x, y) with L = 5 and H = 5 with the the discretized mesh
21 = 2 blue, 22 = 4 green, 23 = 8 yellow, 24 = 16 orange, and 25 = 32 purple solutions
shown in the z axis. (B) The right side view is shown.

2.4 Electrical Analog PDE Solution

2.4.1 Electrical Elements

An electrical mesh analog finite difference algorithm utilizes basic circuit elements in-

cluding capacitance (C), inductance (L), and resistance (R), from which more complex

subsystems such RLC circuits can be designed. Redshaw and Liebmann designed an ap-

paratus which uses the relaxation technique to solve PDEs describing oscillatory flow [20]

and heat transfer problems [6] using a resistive mesh. This device, called a resistance

network analogue, is comprised of resistors connected in a two-dimensional mesh config-

uration. Finite difference mesh points characterize the stencil for a specific PDE, and are

mapped to a resistive mesh for calculation. Solutions are read at the intersection of resistor

terminals, or nodes, as shown in Figure 2.5.

This illustrates the resistance network analogue’s ability to solve for a PDE using a

voltage derived from current summation at each node. Monitoring of the voltage at each

node yields a solution for each element in the computational mesh.

Liebmann showed the error introduced by voltage and current measurements to be

negligible, thus reducing the factors which limit the accuracy of the resistance network

20



Figure 2.5: (A) The derivative of the function ϕ at point P0 is expressed through the dif-
ferences of ϕ between points P0 and P1, P2, P3, and P4. The distance between P0 and P1

is labeled h1. The scalar function ε for vector function ϕ between points P0 and P1, P2,
P3, and P4 is labeled ε1 between P0 and P1. (B) The voltage V [V] at point P0 is expressed
as V0. The current I[A] and Resistance R[Ω] between points P0 and P1 is expressed as
I1 and R1 respectively. The same naming conventions apply for P2, P3, and P4. I0 is the
input current and R0 is defined in terms of other resistances, and therefor not shown on the
diagram. (C) Poisson class electrical 16 node resistance network with the ability to apply
a current at each node.

analogue to simply the mesh size and tolerance of components comprising the mesh [6].

Principles that govern the relaxation technique state that the mesh size must be made so

small that the replacement of the PDE by the finite difference equation is permissible, and

that any error introduced by a mismatch in mesh size and resolution requirement can be

corrected with a correction function [6]. Liebmann also showed that such a network of

resistors contains averaging properties which minimize the error introduced by tolerances

in individual resistor values [6].

2.4.2 Difference Equation Approximation

∇ · ε∇ϕ = g (2.5)

The use of an electrical mesh allows us to generate the solution of an approximation

of the partial differential equation 2.31 refereed to from here on as the electrical differ-

ence equation solution. In the partial difference equation 2.31 where ε is the known scalar

function, ϕ is the function, and g = 0 is the function relationship for a time independent
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Laplace second order partial differential equation. By defining an electrical mesh as shown

in Figure 2.5 and scaling the mesh we can performing linear interpolation as shown fully

in Section 2.7.2 and by disregarding the higher order terms we say that Equation 2.5 is

asymptotically equal to

∇2ϕ ' 1

h2

[
ϕ (P1) + ϕ (P2) + ϕ (P3) + ϕ (P4)− 4ϕ (P0)

]
(2.6)

which is equal to

∇2ϕ ' 1

h2

[
V1 + V2 + V3 + V4 − 4V0

]
(2.7)

The solution to the function ϕ in the differential equation Equation 2.5 has been ap-

proximated through the use of a difference equation. The solution is attained through mea-

surement of voltage values at grid points. All that remains is to set the required boundary

conditions to obtain the full solution if g ≡ 0 everywhere. If g 6= 0 currents from Equa-

tion 2.39 have to be fed into mesh points. The resistance network performs the ”relaxation

technique” automatically and instantaneously for a Laplace equation.

The accuracy of the electrical mesh pde solution is shown to increase with an increase in

mesh density and be independent of the problem area size solved for between pde problem

sizes 8,16,32, and 64, indicated by the reduction in the absolute (non normalized) difference

between the generated electrical mesh solution script, accessible (although currently in

private repository) via Section A.1, and the analytical solution described in Section 2.2,

and derived in Section 2.7.1, shown in Figure 2.6. We also see that the simulation time

required for the Spice circuit simulator increases exponentially for increased mesh density.

It is important to note that we do not have an estimate concerning the scaling of execu-

tion time of the physical electrical mesh, as we have not fabricated one, however I believe

is would showcase the fundamental speedup discussed in Section 2.1. Figure 2.6 behaves

in accordance with our understanding of the effects of finite difference error reduction de-
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scribed in Section 2.3.2.

2.5 Photonic Analog PDE Solution

Silicon Photonics supports weighted summation through constructive and destructive

interference of waveguide confined light, can be assembled into a grid/mesh structure with

nodes that route light, and light sources and light detectors that are able to set bound-

ary conditions and readout solutions. Due to these similarities it is tempting to assume

an equivalence exists between the Electrical Mesh introduced in Section 2.4, however

we will show that there are fundamental physical differences between how the Photonic

node behaves compared to the electrical node. Despite these differences Silicon Photonics

has established fabrication procedures both internally at the Orthogonal Physics Enabled

Nanophotonics (OPEN) Lab and GW Nanofabrication and Imaging Center (NIC) as well

as externally at commercial foundries including the American Institute for Manufacturing

Integrated Photonics (AIM Photonics). The physics of Metatronic ROC discussed in Sec-

tion 2.6 encompass a better mapping to the Electrical Difference equation in Section 2.4

but current Metatronic fabrication processes are in there infancy and are currently done

at length scales [40] orders of magnitude greater than what is needed for our Nanoscale

Metatronic ROC implementation. The combination of imperfect mapping and feasible

fabrication make Photonic ROC worthy of understanding and implementing as a way to

showcase current capabilities of optical analog computing.

2.5.1 Limitations of Passive Photonic Difference Equation Approximation

Photonic ROC operates in the optical band at λ = 1550 nm with waveguide and optical

splitter dimensions in length scale order of micrometers, far larger than the operating wave-

length of light, resulting in distributed element model characteristics for the optical circuit.

Current fabricated Photonic ROC is passive with a future active Photonic ROC planned to

be fabricated at AIM Photonics.
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Figure 2.6: Benchmarking the accuracy of a spice circuit simulator analog mesh 2D PDE
solution against an analytically solved 2D PDE solution of a Laplace heat transfer problem.
Mesh based solutions are scaled linearly from 2 up to the problem size N with problem
sizes 8, 16, 32, and 64 plotted. Average difference is calculated by comparing the spice
based voltage value at a mesh point coordinate to the value sampled from the continuous
analytical solution at the same coordinate. Then the difference from all Simulation Program
with Integrated Circuit Emphasis (SPICE) analytical coordinate comparisons in a mesh are
averaged, resulting in a single average difference point which is plotted for each mesh
for each problem size. This average difference is the measure of accuracy with a higher
difference resulting from a greater deviation in the spice solution from the ”true north”
analytical solution. Thus a lower average difference implies a higher accuracy with a value
of 0 being a perfect match. *Analytical solutions not scaled for volts yet. *Program crashed
at Mesh 49 on problem 64.
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Initial experimental fabrications of Photonic ROC have been composed of pure silicon

and have been passive optical circuits, meaning that waveguide geometry is the driving

force for circuit behaviour.

Although there is no photonic equivalent of electrical inductance or capacitance at mi-

crometer length scales, optical loss due to waveguide attenuation can be considered anal-

ogous to electrical current resistance. The fixed optical loss fabricated into waveguide

geometries allows for passive photonic ROC to approximately solve Laplace class PDEs.

Unlike the electrical mesh, each Photonic ROC splitting node, composed of 4 ring

resonators and a central splitter, due to its micrometer size and distributed element model

behavior is effectively isolated from its neighborhood of surrounding nodes due to the limit

of what a single wavelength of light can reach in a discrete time step.

Computationally this means that at a single point in time the only physical effect that

determines how much light is sent into each of three possible waveguides or is reflected

back into the originating waveguide is the geometry of the node which is fixed. Irregardless

of boundary conditions set and inbound light from surrounding waveguides, each optical

node will always split light in the same percentages, determined by its geometry. This

physics is fundamentally different from the splitting occurring in the electrical mesh in

Section 2.4 and Metatronic ROC in Section 2.6 in which each node’s ”visibility”, due to

their lumped circuit behavior, operates as an all to all network at any given time step. In

a finite difference algorithm that relies on a nodes immediate neighborhood to calculate

the measured value at a node, the neighborhood visibility of a single node is paramount.

The effects of the photonic splitting paradigm will be explored but first it is important to

understand the path that light travels through a node.

As light enters the node a percentage is coupled into the left and right ring resonators on

either side of the waveguide prior to entering the central square where the light is reflected

off of the central circular cavity with an eventual archived splitting of roughly 33% of the

light traveling into each of the three surrounding waveguides as shown in Figure 2.7. The
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design process, physics, and geometry of this novel splitter will be covered in depth in the

dissertation and future Photonic ROC fabrication paper of PhD candidate and OPEN Lab

member Shuai Sun.

Figure 2.7: The (A) geometrically engineered fixed optical loss fabricated into waveguide
geometries allows for (B) Lumerical INTERCONNECT passive photonic ROC simulations
to approximately solve Laplace class PDEs. However, unlike the electrical mesh, each
photonic ROC splitting node, composed of 4 ring resonators and a central splitter, due to
its micrometer size and distributed element model behavior is effectively isolated from its
neighborhood of surrounding nodes due to the limit of what a single wavelength of light
can reach in a discrete time step. The (C) metatronic splitting is neighborhood defined and
can be (D) simulated with COMSOL to showcase the ENZ confinement of displacement
current density.

The difference equation mapping for Photonic ROC is the same as the electrical mesh

up to Equation 2.33. Once Physics becomes involved in the mapping, the first step is for

current summation from the electric mesh described in Equation 2.36 to roughly map the

optical intensity measured by the sum of the output grating couplers attached to each output

waveguides of each splitters written as

(2.8)
4∑

n =1

Pn = 0

where Pn is the optical intensity measured at each of the output grating couplers of each

node.
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2.6 Metatronic Analog PDE Solution

2.6.1 Device Physics

When transitioning from the traditional static electrical resistor mesh operating in radio

frequency from (f ' 30 Hz, λ ' 10 000 km) to (f ' 300 GHz, λ ' 1 mm), or microwave

frequency from (f ' 300 MHz, λ ' 1 m) to (f ' 300 GHz, λ ' 1 mm) described in

Section 2.4 to the Metatronic subwavelength optical frequency domain of (f ' 193 THz,

λ ' 1550 nm) described in Section 2.6, control voltage, V , in each electrical node is

substituted for electric field, E in each Metatronic node. Thus metatronic ‘current’ is not

given by the conductivity, but by the displacement current density, JD = ∂D
∂t

, where D is

the electric displacement [41].

The Metatronic circuit board needs to adhere to the condition that JD is not flowing

outside the ‘wire’. This can be realized via biasing a waveguide board to the epsilon-near-

zero (ENZ) point, where Re(ε) = real part of permittivity = 0 (or near zero). Here the

‘wire’ is given by regions where Re(ε) >> 0, termed epsilon very large (EVL), where JD

is conducted.

In order for the metatronic circuit mesh to accurately map to the finite difference equa-

tion the physical mesh dimension, d, must be much smaller than the optical operation

wavelength, λ = 1550 nm (i.e. d << 1550 nm) in order to create the lumped element

condition.

In order to duplicate the electrical circuit components resistors, inductors, and capaci-

tors in the metatronic optical subwavelength domain, and in doing so reconfigure the mesh

for diffusion and wave equations, the circuit must take advantage of the materials permittiv-

ity properties. If the material is a conventional dielectric (e.g., SiO2 or Si) with Re(ε) > 0

at optical frequencies, the nanoparticle will act as a capacitive impedance (i.e., nano capac-

itor). If the particle is made of material with Re(ε) < 0 at optical frequencies (e.g., noble

metals such as Ag and Au), the particle may behave as a negatively capacitive impedance,
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which implies that it will behave as an inductive impedance (i.e., nano inductor). When the

material exhibits some material loss, that is when Im(ε) 6= 0 (which is almost always the

case), a ”nano resistor” element should be included in the nanocircuit [33].

The ENZ materials used is Indium tin oxide (ITO) with electrical properties shown in

Figure 2.10. The Drude model applied to ITO allows one to define optical equivalent circuit

models provided the size of the mesh.

2.6.2 Finite Difference Equation Equivalence

Following the difference equation mapping in Section 2.7.2 through Equation 2.34 and

by sampling displacement current density at each node as well as the node’s immediate

neighborhood of nodes one edge away, we produce an asymptotically equivalent equation

to partial differential equation 2.5 for each Metatronic mesh grid point

∇2ϕ ' 1

h2

[
JD1 + JD2 + JD3 + JD4 − 4(JD0)

]
. (2.9)

Equation 2.9 is similar to the application of Kirchhoff’s law to the currents ϕ(Pi) meet-

ing at the junction O of a lumped circuit mesh described in Equation 2.7.

Figure 2.8: The figure shows a (A) finite difference node, a (B) metatronic resistive node
with displacement current density sampling locations, and a (C) metatronic material rela-
tive permittivity reconfigurability key.

An equivalent metatronic nano-optic node is presented in Fig 2.8. We exploit the con-

cept that nanoparticles (NPs) in the optics domain can be treated as lumped circuit elements,

whose impedance is defined in terms of the perturbation to the displacement current, JD in
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response of the electric field E. The materials complex permittivity ε̃ acts as a variable for

displacement current as follows

JD =
∂D

∂t
= −jε̃ωE(ω). (2.10)

which, for element size considerably smaller than the optical wavelength [Engheta],

represents an equivalent Ohm’s law in the optical domain, enabling the mapping of the

resistive circuit. In order to convey the flux of the displacement current a sub-wavelength

circuit is considered to be carved in an epsilon-near-zero substrate, which for specific opti-

cal bandwidth enables light to travel through the grooves just like current in copper wiring

[42].

Resistors, capacitors and inductors can modelled as portions within the air grooves,

with materials with well defined permittivity values. In order to map equation 2.37 in the

metatronics circuit, the resistors are modelled as a dissipative dielectric where R = −jωε̃

if ε̃ is a complex number.

Due to the confinement of the displacement current in the air grooves, the impedances

are locally coupled, which in terms of electrical circuit means that a Norton/Thevenin

equivalents are admissible. Therefore, for a limited functional bandwidth, for which the

material of the board is in ENZ condition, Kirchoff’s law at the mesh is satisfied, providing

identical results with respect to a resistive network, reported in Equation 2.9.

2.6.3 Solution of Laplace Equation

By following the analytical derivation in Section 2.7.1 and the electrical mesh map-

ping in Section 2.7.2 as a starting point from which we utilizing COMSOL Multiphyiscs to

simulate the electric field displacement and the displacement current in a 3x3 metatronics

mesh. A strong local electric field, generated by an horizontal dipole, is used for represent-

ing the heat source, while ENZ condition is applied to the rest of the boundaries. In this

section, as an illustrative and not limiting, example the permittivity of the circuit board is
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considered to have negligible losses (ε′′ < 0.1) (ε̃ ' 0) with an overall size of 1000 nm

(d < λ) [43, 44].

The overall dimension of the circuit of Fig. 2.7C is supposed to be smaller than the

operating wavelength, as required for conventional electronic circuit concepts at low fre-

quencies. However, the “spatially static-like” properties of the ENZ substrate, i.e. absence

of a significant phase variation in ENZ, essentially relax this requirement for the optical

nano-circuit board of Fig. 2.9, for which the total length may become also several free-

space wavelengths long (while it is electrically small compared to the very long wavelength

in ENZ).[44]

Under these conditions, the field lines in Figure 2.9 highlights that the Electric displace-

ment and consequently the displacement current, fall only within the air grooves, forced by

the ENZ conditions in the neighboring area (D ' 0).

These COMSOL Multiphyics simulations, with maximum computational mesh size of

5 nm, of electric displacement field, with λ ≈ 1550 nm and f ≈ 193 THz, over Indium tin

oxide (ITO), with complex permittivity ε = 1.0e − 4 + i0.3, in epsilon-near-zero (ENZ)

condition squares in subwavelength optical regime surrounded by air channels, with a width

of 10 nm, broken by metatronic resistive 10 nm × 10 nm squares composed of ITO with

complex permittivity ε = 1.0e−4+ i0.3 squares described in section 2.6.1. The simulation

applies an initial electrical field along the top of each array with a value of 1 V m with

scattering boundary conditions applied to the remaining three sides of each array. The

electrical displacement current density (shown as white arrows), used to sample the PDE

solution from the grid, is confined to the air groves surrounding and throughout the mesh.

Solutions of the PDE solving metatronic processor with increasing mesh density are

reported in Figure 2.11. Interestingly, the solution given by the metatronic circuit for in-

creasing mesh densities, keeping the overall circuit dimension, maps precisely the solution

of a finer mesh in a finite difference approach. This is can be achieved only if the circuit

board is characterized by negligible losses, which causes the absence of a dielectric field
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Figure 2.9: The epsilon-near-zero (ENZ) boxes in this simulation are 100 nm × 100 nm
and the epsilon very large (EVL) groves are 10 nm wide where (A) contains 4 by 4 ENZ
boxes and (B) contains 8 by 8. One can see that at longer length scales the electric dis-
placement field continues to produce the form of the PDE solution, but the containment of
displacement current density within the EVL air groves is weakened.

displacement in the ENZ circuit board providing a perfect electric-circuit behavior.

However, a study of the size and scalability and their impact on the accuracy of the

solution of the metatronic processor becomes absolutely determinant if the losses in the

ENZ circuit board are not negligible as discused in Section 2.6.4). Other parameters, such

as width of the grooves and smoothness of the bending curves can impact the accuracy of

the solution. The undesired influence of these parameters, here not discussed, would re-

sults in a systematic error that can be compensated or mitigated by accurate and controlled

processes.

2.6.4 Monolythic Integration

In the past years, few materials have been considered for fabricating a metatronic circuit

board, such as multilayered stacks of thin film [45, 46] , NPs assemblies and graphene.

However, their large-scale integration is far from easy.

We propose Indium tin oxide as suitable material for a monolithic integration of the

proposed metatronic processor. ITO has a tunable and controllable ENZ position in the
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Figure 2.10: The (A) ENZ wavelength, (B) Electrostatic doping, and (C) Scattering Time
(τsc) as function of process parameters (Oxygen flow-rate and deposition time). The (D)
Drude model of ITO film, sputtered with an initial electron doping of 1019cm−3 and Γ =
1
τsc

, for an increasing carrier modulation (blue to red).

NIR, according to process parameters (e.g. Oxygen flow-rate, Thermal Annealing). Its

optical properties, imaginary and real part of the permittivity, can be electrostatically tuned

[47, 48], thus allowing GHz fast[49] energy efficient [50] reprogrammable features on the

circuit board.

Moreover, recently, our group achieved a consistent control over ITO optical parameters

in particular with respect to the ENZ wavelength as function of sputtering parameter, thus

allowing to bridge the technological gap in the implementation of metatronic circuits [34].

According to our fundamental studies, depicted in figure 2.10, the ITO for the ENZ circuit

board is supposed to be sputtered with 5 sccm Oxygen flow rate, enabling a 200 nm film

in ENZ condition at 1550 nm, with not negligible losses ε̃ = 0.3i which corresponds to a

scattering time, Γ = 2 fs. The resistors, deposited using 20 sccm oxygen flow rate, which
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yields to ε̃ = 1.2 + 0.8i and a scattering time of 5fs.

The major disadvantage is represented by the losses at ENZ condition. As a conse-

quence of the losses in the ITO circuit board, the lines of the displacement field are not

only contained in the air grooves, contrarily to the case of a ENZ material with negligible

losses. In presence of non-negligible losses in the ENZ material, the circuit board is not

completely insulating, since the displacement current is not negligible.

JD =
∂D

∂t
= ε”ωE(ω). (2.11)

There are two major kinds of phenomena that impact the accuracy of the solution, both

of which depend on the ITO losses. The first one, is a function of the mesh density and

the second one of the total physical length of the circuit board. High density (> 5 × 5)

induces coupling within wires that shouldn’t be connected, while the larger physical length

(> 2µm) contributes to unwanted dissipation, deviating from the original solution.

Figure 2.11 plots the accuracy as function of the number of nodes and physical dimen-

sion of the circuit board. The maximum accuracy (> 90%) is obtained for a 1µm grid, with

a 4× 4 mesh density. This is achieved thanks to the trade-off between mesh size and den-

sity, which minimizes the wire coupling, without extending the wiring length, producing

unwanted losses.

The ITO is considered to be in a capacitor configuration, spaced by a thin dielectric, for

electrostatic doping, enabling fine tuning of the permittivity values as well as updating of

the problem.

The variation of the carrier density via gating in ITO affects both the resistance and the

“reactance” in the metatronics equivalent circuit, hindering the accuracy of the solution,

being Imaginary, and the real part of the permittivity in Kramer-Kronig relation. Neverthe-

less, contrarily to the resistive circuit, if either the boundary conditions or the impedances

are quickly “refreshed”, the nano-optics equivalent circuit is substantially not affected by

dispersion. In this case, the lumped circuit model still holds for high frequency modulation,
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since even at 100s of GHz, the timescale at which the signal is modulated does so substan-

tially slower than the time taken by the optical signal to travel through the nano-optics

network.

2.6.5 ITO based Performance

Figure 2.11: The metatronic solution accuracy as function of mesh density and size when
compared to an discrete PDE solution.

The main limitation of the ITO metatronic processor are the unwanted losses in the cir-

cuit board. The losses affect both the power consumption and the accuracy of the solution.

However, for a small size of the processor, an approximate solution is given. The accuracy

is shown in terms of error computed with respect to the solution of a finite difference of

comparable mesh density.

The power consumption from the processor is the summation of the optical power used

for exciting the dipole (initiating the processor) and the the radio frequency power em-

ployed for modulating the carrier densities of each lumped elements, i.e. reprogramming
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the circuit. Concerning the reconfigurability of the processor, recent works showed atto-

joule efficient [50, 49] ITO based modulators operating at high speed. On the other hand,

few mW optical power are needed for exciting the fluorescent molecule and setting the

boundary conditions. Although, efficient measurements schemes must be used for detect-

ing the electric field displacement at each node of the metatronic mesh, avoiding scanning

over the sample, e.g. high resolution tip enhanced near field spectroscopy, in order to min-

imize the power used for the detection mechanism.

2.6.6 Near Field Displacement Measurement

Figure 2.12: Schematic representation of a ”Nanophotonic Probe”. An impinging radia-
tion excites a fluorescent molecule, creating a local near field, which produces an electric
displacement in the metatronic circuit. The displacement is probed by the tips of a probe
card, in a campanile tip aperture nSOM configuration.

In order to sample the electric field displacement signal at the nodes of the metatronic

mesh, deep sub-wavelength near field microscopy has to be employed with nanometric spa-

tial resolution [51, 52, 53]. Although, regular Near-field is associated with AFM systems,

thus requiring long scanning time. In this section, we propose a Nano-optic probe card for

reading of the values of the local displacement field as shown in Figure 2.12). The read-

ing mechanism is based on multiple tips characterized by sub-wavelength aperture at the

apex which collects the local near field radiation similarly to a local near field microscope,

allowing for a parallel reading out. NSOM would be preferential with respect to Scatter-

ing type SNOM since the former will minimize the coupling between vertical dipoles, i.e.
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metallic tip, introducing second order scattering and a higher degree of uncertainty in the

system.

2.7 Supplemental Material

2.7.1 Analytical Solution to a Laplacian Steady State Heat Transfer PDE

Laplace’s equation is a second-order partial differential equation which produces, as a

solution, harmonic functions that accurately describe the behavior of electric, gravitational

and fluid potentials. It has no time dependence, only a spatial dependence, and is often

written as

∇2ϕ = 0 (2.12)

where∇2 is the Laplace operator and ϕ is a scalar function.

For the purpose of simplicity, we will use Cartesian coordinate system and only discuss

spatial variables x and y, which allows Laplace’s equation to be rewritten as

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= 0 (2.13)

which is equivalent to equation 2.12 for two dimensions. We are therefor solving a

second order linear PDE. This describes a steady state system, and can be used for:

• steady state temperature distributions

• steady state stress distributions

• steady state potential distributions

• steady state flows
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We will evaluate the problem over the rectangular region 0 ≤ x ≤ L, 0 ≤ y ≤ H for a

fixed boundary temperature distribution.

ϕ (x, 0) = f1 (x)

ϕ (L, y) = g2 (y)

ϕ (x,H) = f2 (x)

ϕ (0, y) = g1 (y)

(2.14)

The four fixed boundary temperature distributes are non homogeneous, meaning that

we cannot apply the separation of variables technique to solve the problem. However we

can divide ϕ (x, y) into its four components, where each component ϕi will satisfy one

non-zero boundary condition and three zero boundary conditions.

ϕ (x, y) = ϕ1 (x, y) + ϕ2(x, y) + ϕ3 (x, y) + ϕ4 (x, y) (2.15)

With this in mind we will set our non-zero boundary condition to be at the top of our

problem which will act as a heat source when we compare our analytical result to our

electrical and optical solutions.

BC1 : ϕ3 (x, 0) = 0 for 0 ≤ x ≤ L

BC2 : ϕ3 (L, y) = 0 for 0 ≤ y ≤ H

BC3 : ϕ3 (x,H) = f2 (x) for 0 ≤ x ≤ L

BC4 : ϕ3 (0, y) = 0 for 0 ≤ y ≤ H

(2.16)

Now we can apply separation of variables to each ϕi function. For ϕ3 (x, y) we set the
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following

ϕ3 (x, y) = X (x)Y (y) (2.17)

The three homogeneous boundary conditions will yield the following conditions

BC1 : X (x)Y (0) = 0 ⇒ Y (0) = 0

BC2 : X (L)Y (y) = 0 ⇒ X (L) = 0

BC4 : X (0)Y (y) = 0 ⇒ X (0) = 0

(2.18)

Substitution of 2.17 into 2.13 yields

X ′′ (x)Y (y) +X (x)Y ′′ (y) = 0 (2.19)

which is separated into

X ′′ (x)

X (x)
= −Y

′′ (y)

Y (y)
= k (2.20)

where k is a constant equal to, greater than, or less then zero. The separation yields the

following problems for X and Y

X (x)′′ − kX (x) = 0, X (0) = X (L) = 0 (2.21)

and

Y (y)′′ + kY (y) = 0, Y (0) = 0 (2.22)

For X(x) we now need to find if a nontrivial solution exists for a value of k

1. Case k > 0
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(a) Boundary Value Problem: X(x)′′ − kX(x) = 0, X(0) = X(L) = 0

(b) General Solution: X(x) = C1e
√
kx + C2e

−
√
kx

(c) Boundary Condition: X(0) = 0 implies that C1 + C2 = 0, or C2 = −C1, so

that X(x) = C1[e
√
kx − e−

√
kx] = 2C1 sinh(

√
kx)

(d) Boundary Condition: X(L) = 0 implies that C2 sinh(
√
kL) = 0, which is

satisfied only if C2 = 0. This follows from the fact that sinh(x) is zero only at

x = 0.

(e) Trivial Solution: The only solution to the boundary value problem for k > 0 is

the trivial solution X(x) = 0.

2. Case k = 0

(a) Boundary Value Problem: X(x)′′ = 0, X(0) = X(L) = 0

(b) General Solution: X(x) = C1x+ C2

(c) Boundary Condition: X(0) = 0 implies that C2 = 0.

(d) Boundary Condition: X(L) = 0 implies that C1L = 0, or C1 = 0.

(e) Trivial Solution: The only solution to the case k = 0 is X(x) = 0

3. Case k < 0

(a) Boundary Value Problems: X(x)′′ − kX(x) = 0, X(0) = X(L) = 0

(b) Define: k = −λ so the λ > 0

(c) General Solution: X(x) = C1 cos(
√
λx) + C2 sin(

√
λx)

(d) Boundary Condition: X(0) = 0 implies that C1 +C2 · 0 = 0 which implies that

C1 = 0

(e) Boundary Condition: X(L) = 0 combined with X(x) = C2 sin(
√
λx) implies

that sin(
√
λL) = 0
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A nontrivial solution exists for k < 0. Since L is fixed, we must adjust λ in order that

the above equation is satisfied. We set k = −λ, where λ > 0 gives

X (x)′′ + λX (x) = 0, X (0) = 0, X (L) = 0 (2.23)

with eigenvalues of

λ = λn =
(nπ
L

)2
, n = 1, 2, 3, · · · (2.24)

and associated eigenfunctions

Xn (x) = sin
(nπ
L

)
(2.25)

Now consider the Y equation while recalling that k = −λ so that kn = −λn. The

associated Yn function will satisfy the differential equation

Y (y)′′ −
(nπ
L

)2
Y (y) = 0, Y (0) = 0 (2.26)

Equation 2.26 is not longer a boundary value problem but is now an initial value prob-

lem with only one condition. The general solution can be written as

Yn (y) = A1e
nπy/L + A2e

−nπy/L (2.27)

but it is more convenient to use a hyperbolic functions

Yn (y) = B1 cosh
(nπy
L

)
+B2 sinh

(
−nπy
L

)
(2.28)

The condition Y (0) = 0 implies that B1 = 0 This is due to the fact that cosh (0) = 1

and sinh (0) = 0. Therefor for Yn(0) to equal 0, B1 must equal 0. This shows that the

40



Yn (y) function associated with the Xn (x) function is

Yn (y) = B2 sinh

(
−nπy
L

)
(2.29)

This results in the product solutions yielded by the separation of variables method up

to a constant.

ϕ3,n (x, y) = Xn (x)Yn (y) = sin
(nπx
L

)
sinh

(nπy
L

)
for n = 1, 2, 3, . . . (2.30)

2.7.2 Mapping of Difference Equation Approximation to Electrical Resistance Mesh

∇ · ε∇ϕ = g (2.31)

The use of an electrical mesh allows us to generate the solution of an approximation

of the partial differential equation 2.31 refereed to from here on as the electrical difference

equation solution. In the partial difference equation 2.31 where ε is the known scalar func-

tion, ϕ is the function, and g = 0 is the function relationship for a time independent Laplace

second order partial differential equation. By performing linear interpolation on Figure 2.5

and disregarding the higher order terms we say that Equation 2.31 is asymptotically equal

to:

∇ · ε∇ϕ '
2

h1 + h3

[ ε1
h1

(ϕ( ~P1)− ϕ( ~P0)) +
ε3
h3

(ϕ( ~P3)− ϕ ~P0))
]

+
2

h2 + h4

[ ε2
h2

(ϕ( ~P2)− ϕ( ~P0)) +
ε4
h4

(ϕ( ~P4)− ϕ( ~P0))
] (2.32)

By setting neighboring points equal distant h = h1 = h2 = h3 = h4 and having a
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constant scalar function ε = ε1 = ε2 = ε3 = ε4

∇ · ε∇ϕ '
2

h+ h

[ ε
h

(ϕ( ~P1)− ϕ( ~P0)) +
ε

h
(ϕ( ~P3)− ϕ( ~P0))

]
+

2

h+ h

[ ε
h

(ϕ( ~P2)− ϕ( ~P0)) +
ε

h
(ϕ( ~P4)− ϕ( ~P0))

] (2.33)

By simplifying Eq. 2.33 you are left with

∇2ϕ ' 1

h2

[
ϕ( ~P1) + ϕ( ~P2) + ϕ( ~P3) + ϕ( ~P4)− 4(ϕ( ~P0))

]
(2.34)

Through the assignment of values and directions in Figure 2.5 and the application of

Kirchoff’s laws the following applies for n = 1, n = 2, n = 3, n = 4:

In =
Vn − V0
Rn

(2.35)

Kirchoff’s laws also show that:

4∑
n=1

In = −I0 (2.36)

Eq. 2.35 and Eq. 2.36 result in:

V1 − V0
R1

+
V2 − V0
R1

+
V3 − V0
R3

+
V4 − V0
R4

= −I0 (2.37)

By defining R0 in the following manner

R1 = R2 = R3 = R4 = h2R0 (2.38)
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and by defining the current I0 fed into P0 to be

I0 = −g/R0 (2.39)

where g is the function relationship defined in Equation 2.31, a formal analogy can

be shown between the voltages Vn appearing at the junctions and the sough function ϕ

by comparing Equation 2.34 and a redefined Equation 2.37 through the definitions from

Equation 2.38 and 2.39 in order show that

∇2ϕ ' 1

h2

[
V1 + V2 + V3 + V4 − 4V0

]
(2.40)

The solution to the function ϕ in the differential equation Equation 2.31 has been ap-

proximated through the use of a difference equation. The solution is attained through mea-

surement of voltage values at grid points. All that remains is to set the required boundary

conditions to obtain the full solution if g ≡ 0 everywhere. If g 6= 0 currents from Equation

2.39 have to be fed into mesh points in order to use the resistive mesh to solve Poisson

class PDEs. The resistance network performs the ”relaxation technique” automatically and

instantaneously for a Laplace equation.
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Chapter 3 - Future Work

3.1 Future Work

3.1.1 Year 3 from October 2019 to September 2020

Going forward I would like to work on the metatronic fabrication effort since I have

spent most of my research time thus far working on understanding the mathematical un-

derpinning of finite difference computing, writing software, and building computational

models. One of the initial challenges metatronically will be constructing nanophotonic

local near field probes that readout all displacement current mesh points in parallel.

3.1.2 Year 4 from October 2020 to September 2021

In the final year I hope I will be able to program a fabricated metatronic ROC to be

used as an analog accelerator within a numerical parallel multi grid method to see if we

can demonstrate computational time complexity speedups over purely software based im-

plementations.

3.2 Concluding Thoughts

The concept of an analog mesh based PDE solving co-processor is interesting to anyone

who wants to improve the computational time complexity of their algorithm regardless of

the physical phenomena utilized to perform by maintaining analog operations in constant

time O(1) as shown in Figure 2.1.

In order to make up for an analog computers lack a flexibility compared to a digital

transistor CMOS based architecture, the analog alternative must also provide flexibility

of problem types within its problem domain. This is accomplished through the use of

resistors, capacitors, and inductors electrically, and the real and imaginary components of

relative permittivity at material interfaces metatronically as shown in Figure 1.3.
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In the investigation of the photonic and metatronic implementations of ROC, we note

that the metatronic architecture exhibits increasing accuracy with increasing node density

as shown in Figure 1.5, in the same fashion as the electric node density as shown in Figure

1.4. However the metatronic circuit has an optical refresh rate in the Terahertz as opposed

to the electrical Gigahertz refresh rate. This means that the upper limit to the write time, or

clock speed, for the Metatronic circuit is higher than that of the electric circuit because the

metatronic circuit will remain in the lumped element domain for higher frequencies than

the electric circuit while still abiding by Shannon-Hartley theorem limit.

The large size of the photonic mesh and its relatively short optical operation wavelength

results in a distributed circuit, changing the physics of optical node splitting from neighbor-

hood defined to geometrically defined, as shown the Figure 1.2, and thus causing decreased

accuracy with increased photonic node density as noted in Figure 1.5.

The Metatronic solution operates at the same short operation wavelenght as the Pho-

tonic circuit, but due to the metatronic circuits nanoscale dimension it operates as a lumped

element and thus retains its increasing density increasing accuracy behavior, while still al-

lowing for pde reconfiguration utilizing metatronic capacitance and inductance due to the

change in sign of real component of the relative permittivity at material interfaces. Meta-

tronics retains, the computational complexity shown in Figure 1.5, accuracy density behav-

ior shown in Figure 1.5, and reconfigurability advantages of electronics while allowing for

an increased upper limit write time, or clock speed. This novelty merits the fabrication of

metatronic ROC.
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Appendix A - Software Development

A.1 GitHub

The software repository used to call simulations via their API’s and plot output data is

located in the private repository roc grid simulation

https://github.com/openhpclgw/roc_grid_simulation located within

the GitHub Organization OPEN HPCL Collaboration at

https://github.com/openhpclgw. Engin Kayraklioglu developed the master

branch of the Github repository, which I branched into my own work space named bound-

aryConditions, in which I wrote all my data processing Python code.
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Appendix B - Computational Models

B.1 Computation

B.1.1 Computing Resources

The computations performed in this thesis utilize a variety of software tools described in

Section B.2 and well as developed source code described in Section A.1 where all compu-

tation has access to the same resources which are as follows: MacBook Pro (15-inch, Late

2016), Processor 2.9 GHz Intel Core i7, Memory 16 GB 2133 MHz LPDDR3, Graphics

Radeon Pro 460 4 GB Intel HD Graphics 530 1536 MB.

B.2 Simulation Tools and Applications

B.2.1 COMPSOL Multiphysics

I used COMSOL Multiphysics to solve a heat transfer partial differential equation nu-

merically in order to have a comparison for Photonic ROC and Metatronic ROC analog

solutions. I also used COMSOL Multiphysics to simulate Metatronic ROC at different

mesh scales.

B.2.2 Lumerical Interconnect

I used Lumerical Interconnect to view and understand the schematic of the Photonic

ROC.

B.2.3 Wolfram Mathematica

I used Wolfram Mathematica to visualize the discretization of an analytical PDE solu-

tion.
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B.2.4 Simulation Program with Integrated Circuit Emphasis (SPICE)

I use SPICE within my bounadryConditions Python code to generate and simulate an

analog electrical resistance grid at different mesh scales.
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